A fast spherical harmonics transform algorithm

نویسندگان

  • Reiji Suda
  • Masayasu Takami
چکیده

The spectral method with discrete spherical harmonics transform plays an important role in many applications. In spite of its advantages, the spherical harmonics transform has a drawback of high computational complexity, which is determined by that of the associated Legendre transform, and the direct computation requires time of O(N3) for cut-off frequency N . In this paper, we propose a fast approximate algorithm for the associated Legendre transform. Our algorithm evaluates the transform by means of polynomial interpolation accelerated by the Fast Multipole Method (FMM). The divideand-conquer approach with split Legendre functions gives computational complexity O(N2 logN). Experimental results show that our algorithm is stable and is faster than the direct computation for N ≥ 511.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Transform for Spherical Harmonics

Spherical Harmonics arise on the sphere S in the same way that the (Fourier) exponential functions {e}k∈Z arise on the circle. Spherical Harmonic series have many of the same wonderful properties as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the Fast Fourier Transform. Without a fast transform, evaluating (or expanding in) Spherical Har...

متن کامل

Fast spin ±2 spherical harmonics transforms and application in cosmology

An exact fast algorithm is developed for the spin-weighted spherical harmonics transforms of band-limited spin ±2 functions on the sphere. First, we recall the notion of spin functions on the sphere and their decomposition in an orthonormal basis of spin-weighted spherical harmonics. Second, we discuss the a priori O(L4) asymptotic complexity of the spin ±2 spherical harmonics transforms, where...

متن کامل

Fast Spin ±2 Spherical Harmonics Transforms

An exact fast algorithm is developed for the direct spin-weighted spherical harmonics transforms of bandlimited spin ±2 functions on the sphere. First, we define spin functions on the sphere and their decomposition in an orthonormal basis of spin-weighted spherical harmonics. Second, we discuss the a priori O(L4) asymptotic complexity of the spin ±2 spherical harmonics transforms, where 2L stan...

متن کامل

Using Fast Fourier Transform in the 3-d Multilevel Fast Multipole Algorithm

In this paper a method is presented how to perform interpolation and anterpolation in both spherical coordinates θ and φ by trigonometric polynomials and the fast Fourier transform (FFT) in the 3-D multilevel fast multipole algorithm (MLFMA). The proposed method is exact in interpolation and anterpolation, and has the high numerical efficiency of FFT. A numerical comparison suggests that the pr...

متن کامل

A Fast Spherical Filter with Uniform Resolution

for transforming Legendre polynomial expansions, but it appears not to generalize to the spherical case. This paper introduces a fast algorithm for obtaining a uniform resolution representation of a function known at a latitude– Swarztrauber [12] has reviewed other transformation algolongitude grid on the surface of a sphere, equivalent to a triangular, rithms. isotropic truncation of the spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2002