A fast spherical harmonics transform algorithm
نویسندگان
چکیده
The spectral method with discrete spherical harmonics transform plays an important role in many applications. In spite of its advantages, the spherical harmonics transform has a drawback of high computational complexity, which is determined by that of the associated Legendre transform, and the direct computation requires time of O(N3) for cut-off frequency N . In this paper, we propose a fast approximate algorithm for the associated Legendre transform. Our algorithm evaluates the transform by means of polynomial interpolation accelerated by the Fast Multipole Method (FMM). The divideand-conquer approach with split Legendre functions gives computational complexity O(N2 logN). Experimental results show that our algorithm is stable and is faster than the direct computation for N ≥ 511.
منابع مشابه
A Fast Transform for Spherical Harmonics
Spherical Harmonics arise on the sphere S in the same way that the (Fourier) exponential functions {e}k∈Z arise on the circle. Spherical Harmonic series have many of the same wonderful properties as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the Fast Fourier Transform. Without a fast transform, evaluating (or expanding in) Spherical Har...
متن کاملFast spin ±2 spherical harmonics transforms and application in cosmology
An exact fast algorithm is developed for the spin-weighted spherical harmonics transforms of band-limited spin ±2 functions on the sphere. First, we recall the notion of spin functions on the sphere and their decomposition in an orthonormal basis of spin-weighted spherical harmonics. Second, we discuss the a priori O(L4) asymptotic complexity of the spin ±2 spherical harmonics transforms, where...
متن کاملFast Spin ±2 Spherical Harmonics Transforms
An exact fast algorithm is developed for the direct spin-weighted spherical harmonics transforms of bandlimited spin ±2 functions on the sphere. First, we define spin functions on the sphere and their decomposition in an orthonormal basis of spin-weighted spherical harmonics. Second, we discuss the a priori O(L4) asymptotic complexity of the spin ±2 spherical harmonics transforms, where 2L stan...
متن کاملUsing Fast Fourier Transform in the 3-d Multilevel Fast Multipole Algorithm
In this paper a method is presented how to perform interpolation and anterpolation in both spherical coordinates θ and φ by trigonometric polynomials and the fast Fourier transform (FFT) in the 3-D multilevel fast multipole algorithm (MLFMA). The proposed method is exact in interpolation and anterpolation, and has the high numerical efficiency of FFT. A numerical comparison suggests that the pr...
متن کاملA Fast Spherical Filter with Uniform Resolution
for transforming Legendre polynomial expansions, but it appears not to generalize to the spherical case. This paper introduces a fast algorithm for obtaining a uniform resolution representation of a function known at a latitude– Swarztrauber [12] has reviewed other transformation algolongitude grid on the surface of a sphere, equivalent to a triangular, rithms. isotropic truncation of the spher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002